

DE BEERS GROUP

۲

金刚石 手册

technologies@e6.com

金刚石介绍	3	精密部件	18
物理性能	4	热学性能	19
金刚石分类	5	金刚石散热片	20
金刚石合成	6	超精加工	21
CVD 金刚石类型	7	电子性能	22
晶体学	8	金刚石的量子应用	23
力学强度	9	电化学性能	24
金刚石抛光	10		
金刚石表面	11	数据表	
		光学级和射频级	25
性能		热学级	26
光学性能	12	机械级	27
光学常数	13	电化学加工级	28
拉曼散射	14	电子级	29
单晶光学器件	15	DNV 级材料	30
多晶光学器件	16		
发射率和射频窗口	17	延伸阅读	31

在以下社交媒体上关注我们

2

订购 CVD 金刚石产品 · 请访问 e6cvd.com

随着CVD金刚石合成和加工技术不断进步, 在实际应用中能够使用具有优异性能的金刚 石材料。工程单晶 CVD 金刚石具有超低吸收 率和双折射率,并且光程长,使单片金刚石拉 曼激光器得以成为现实。

金刚石的特点是具有优异的硬度、鲁棒 性以及光学与热学性能,可用于制造精 美的宝石和精良的工业刀具。

但天然金刚石固有的可变性和稀缺性限 制了其在工程应用中的使用。合成工艺 的发展让制造持续稳定的工程人造金刚 石成为可能。人们最初在 20 世纪 50 年 代运用高温高压法、后来在 80 年代运 用化学气相沉积法来制造优异的共价晶 体金刚石。

现代工业消耗的人造金刚石约有 800 吨,大约是作为宝石开采的天然金刚石 的150 倍。

碳属于第四族元素·在元素周期表中位于硅的 上方。

一切在于结构

金刚石的特性源自其结构,任一原子都 被相邻的四个原子包围,通过共价键结 合在立方晶格中,形成四面体结构。这 种结合坚固、堆积紧凑、致密、刚性 的结构使其具有优异的性能。能够操控 的结构使其具有优异的性能。能够操控 缺陷和合成条件的影响,意味着材料科 学家已经可以针对广泛的应用优化和定 制金刚石的特性。通过控制缺陷和合成 条件的影响,材料科学家能够优化和定 制金刚石的显著性能,以获得广泛的应 用。

高温高压合成的金刚石通常掺氮·因此具有独特的黄色色调。

	值			
密度	3.51524 x 10 ³ kg m ⁻³			
数密度	1.77 x 10 ²³ cm ⁻³			
晶格类型	面心立方 Fd3m-O _h 7			
晶格间距	在 298 K 温度下, 晶格常数介于 0.356683 ± -0.000001 和 0.356725 ± -0.000003 nm 之间			
此刻却在レ	5 MPa m ^{0.5} 单晶			
m 我 初 足 Kic	8.5 MPa m ^{0.5} 多晶			
泊松比	0.1			
杨氏模量	1050 GPa			
收到空中	2.5 to 3 GPa 单晶 (取决于表面光洁度)			
刷装强反	200 to 1100 MPa 多晶(取决于晶粒大小和晶粒)			
疲劳寿命	在相当于疲劳强度 70% 的应力作用下, 经 >107 次循 环后, 强度 >95%			
断裂面	{111} 面, 偶尔为 {110} 面			
	2.5 单晶			
韦伯模量	20 生长面 多晶 10 成核面 多晶			
西中	70 to 120 GPa 单晶(取决于晶面和凹痕方向)			
땣 <i>1</i> 호	~81 ± 18 GPa 多晶(取决于晶面和凹痕方向)			
摩擦系数 (µ)	0.05 至 0.15(取决于取向) 在空气中(需表面终止)			

3. 金刚石的力学性能

天然金刚石首先按其光学性能分类。大 多数为Ⅰ型,吸收边为约330 nm,少 数为Ⅱ型,吸收边为约220 nm。多年 来,这一天然分类法已得到扩展,并进 一步与氮和氮团簇等不同的主要缺陷关 联。从广义上说,这一分类法对人造金 刚石仍有重要意义,由于氮含量不同, 高温高压法生长的金刚石大多为 lb 型, 而 CVD 法生长的金刚石大多为 lla 型。 但在 CVD 领域,现有多种根据特定特 性定制开发的多晶和单晶等级,是这种 简单的分类法无法区分的。

化学气相沉积 (CVD)

CVD 金刚石的制备利用了碳的两种同素 异形体(sp²和 sp³)之间相对较小的稳 定性差异。要创造合适的表面条件、有 氢原子的存在以及高于 600°C 的表面温 度,金刚石的形成取决于有一个比石墨 更快的成核和生长速率。

生长条件是通过氢热解、等离子体中的 气态碳源以及 2000℃ 以上的气体温度 创造的。

可通过微波、射频、激光、直流电、

热丝和化学反应来加热等离子体。连续 金刚石的成核和生长要求衬底具有耐火 特性、稳定的碳化物形成和较低的热膨 胀系数。

经过近 40 年对 CVD 金刚石生长断断续 续的研究,微波等离子体增强CVD合成 法是90 年代以来兴起的一种工业合成金 刚石方法。这种方法的生长速度和纯度 控制有利于制造高质量的自支撑多晶和 单晶 CVD 金刚石。

高温高压法 (HPHT)

绝大多数人造金刚石都是使用高温高压 法制造的。HPHT 旨在模拟天然形成金 刚石的热力学条件,但加入了熔融金属 溶剂或催化剂,以降低巨大的动能势 垒, 并充当溶解碳的输送介质。这种方法生 长的材料通常呈现一种黄色色调,这是 因为大气和生长材料中的氮进入到了金 刚石晶格中。

延伸阅读 5. CVD: 早期

6. 人工合成法

工业陶瓷

CVD 金刚石有时按粒度分为超纳米晶 (<10 nm)、纳米晶 (<50 nm)、微米晶 (<500 µm) 和单晶金刚石。晶粒大小 取决于合成条件、衬底和层厚。厚度超 过大约 50 µm 的膜层可从载体衬底上 去除,留下自支撑块状 CVD 金刚石材 料。

多晶 CVD 金刚石

通过控制杂质和晶界可制作出直径 120 mm 的自支撑多晶金刚石晶圆,其热性 能和红外光学性能接近最高品质的完美 金刚石。还可制作直径 140 mm 的自支 撑多晶金刚石晶圆,此类晶圆更耐用、 晶粒更细,导热性比铜高 2.5 倍。

单晶 CVD 金刚石

单晶金刚石材料具有均一、特殊的 IIa 型光学、热学和力学性能,通常以同质 外延的模式生长。可提供样品最大尺寸 为8x8x2毫米。

单晶 CVD金刚石分级				
单晶 MCC	天然 lla 型金刚石的工程 替代品			
光学级	可控吸收和双折射金刚石			
电子级	用于量子光学和电子级的 超高纯度金刚石			

多晶 CVD 金刚石			
光学级	专为远红外激光光学应用 而设计		
电子级	用于大面积无源电子器件 级的超高纯度材料		
热学级	用于散热的高导热金刚石		
机械级	精密加工级高强度金刚石		
电化学级	电化学应用专用掺硼金 刚石		

金刚石的结构

金刚石中的每个碳原子都与距其最近的 四个相邻原子结合组成一个正四面体。 这些正四面体排列成不同的面心立方结 构 Fd3m-0_h⁷。

八面体金刚石晶体需考虑的三个主要晶 面是 {111}、{100} 和 {110}。金刚石行业 中更常用的命名法将其分别称为 3 点、4 点和 2 点。

大多数 CVD 单晶金刚石具有 {100} 取 向表面、{110} 边缘,其中 {111} 为解理 面。所有上述表面都可出现在 CVD 金 刚石制品中。

平面	4 pt	2 pt	3 pt
晶面	(100)	(110)	(111)
4 pt	0°	45°	54°44′
{100}	90°	90°	
2 pt	2 pt 45°		35°16′
{110}	{ 110 } 90°		90°
3 pt	54°44′	35°16′	0°
{111}		90°	72°32′

多晶金刚石

由于生长过程的原因,多晶 CVD 金刚 石晶粒结构的构成各异。在成核过程中 形成随机取向的小晶粒。然后具有利于 生长条件切面的晶粒迅速形成直径约为 膜厚10%的大晶粒,并在生长方向上伸 长。经加工后,仍表现出具有许多取向 的各异表面。

掺硼金刚石抛光表面的SEM(扫描电子显 微镜)图像·突显不同的取向。抛光后的横 截面·显示了从成核面沿生长方向延伸的 结构。

金刚石强度

碳碳共价键使金刚石成为一种强度非常 高的材料。金刚石晶格的超高刚度还使 其成为一种非常坚硬的材料,因此金 刚石是一种强度极高的陶瓷。使金刚石 断裂的应力与材料中临界缺陷的大小有 矣。

单晶强度

单晶金刚石的拉伸断裂测试发现,临 界缺陷尺寸约为 100 nm。在力学测试 中,断裂强度取决于受测的表面光洁度 和体积。经精细的表面处理后,3 × 5 × 0.2 mm 样品的断裂应力在 2.5 - 3.0 GPa 区间内。

多晶金刚石的强度

块状多晶金刚石 (PCD) 强度在 200 -1100 MPa 区间内。人们已发现临界缺 陷与晶粒大小成正比,因此其强度大大 减弱。由于临界缺陷/晶粒尺寸在 ~50 - 300 μm 区间内较大,PCD 强度相对 独立与表面光洁度,当晶粒尺寸大于 ~100 μm 时,韦伯模量为~20。

晶粒尺寸随层厚而增加,强度也和层厚 相关。晶粒尺寸还取决于生长条件和层 的取向;当形核面处于拉伸状态时, 断裂应力较高,等级差异较小。在使用 时,应考虑哪一面处于拉伸状态。在 相当于断裂应力 70% 的应力作用下, 经 107 次循环后,发现断裂强度没有退 化。

多晶金刚石的强度和晶粒大小相关。粒度更细的机械级配方强度更大,而所有配方的材料强度 都与厚度相关。这种效应在生长面最为明显。 加工这种最坚硬的块状材料绝非易事。 迄今为止,大多数方法仍使用金刚石来 加工金刚石。金刚石的 {111} 面比其他面 更坚硬,更耐磨。

研磨

金刚石粗加工是通过使用金刚石砂浆快 速去除材料的宝石工艺来实现的。其物 理磨损机制为脆性断裂,表面粗糙,亚 表面损伤明显。

磨光盘抛光

对于单晶金刚石,通过限制磨损断裂面 的方向,可实现低损伤、低表面粗糙 度。金刚石被压在一块高速旋转的铸 铁板上,这是一块嵌有金刚石颗粒的 磨光盘。它可同时实现高表面光洁度 (Ra<1 nm)、低损伤。

树脂结合剂砂轮抛光

这可用来加工单晶金刚石和多晶金刚 石。虽然可以达到抛光面积大、高平整 度的效果,但其亚表面加工损伤比磨光 盘抛光严重的多。

刻蚀金刚石

CVD 金刚石能在高 pH 值化学机械抛光 (CMP) 浆料和等离子体反应离子刻蚀工 艺中被刻蚀。

运用传统的磨光盘抛光法在单晶金刚石上制备的高质量、低损伤表面。深度<5 nm 的浅抛光凹槽宽度 >20 nm。

用树脂基金刚石抛光垫抛光的多晶金刚石。 晶粒起伏是由于晶粒取向不同、抛光速率不 同所致。

表面终止

金刚石晶格以悬空碳键终止,O 和 OH 基团通常以共价键与其结合。表面也可 通过等离子体处理工艺用氢终止。裸露 的金刚石表面对油和尘粒具有固有的亲 和性。

清洗金刚石

金刚石表面的残余污染可用侵蚀性高温 (>150°C)氧化溶液(例如酸(如 H₂SO₄)与氧化剂(如 KNO₃)的混合物)去 除。此类清洗措施用于块状 CVD 金刚 石的制造工艺,并在金刚石表面留下氧 终止。在粘合和金属化等工艺前,需即 时清洗金刚石和/或注意避免表面污染。

碳化物形成

两组不同的金属会与金刚石发生反应。 第一组形成稳定的碳化物,如硅 (Si)、 钨(W)、钛(Ti)。第二组包括铁(Fe)、钴 (Co)、铬(Cr)和镍(Ni),是碳的溶剂, 形成的石墨化界面粘结力较差,甚至无 粘结力。

金属化与光学涂层

可采用薄膜型多层金属涂层,以碳化物 形成元素为粘结基底,加上稳定的惰性 金属如铜 (Au)、铂 (Pt),从而形成金属 碳化物欧姆接触层。此类涂层可稳定耐 受~400°C 的温度,用于间接附着连接 节点或热沉。电介质光学涂层也可采用 通过利用极薄的碳化物附着层。

氧化和石墨化

在空气中,金刚石热氧化的起始温度 在 600°C 以上。在还原性气氛(如 H2)中,石墨化的起始温度在 1300°C 以 上。表面石墨化也可在离子轰击下发 生,例如在低压等离子体清洗过程中。

镀覆在多晶 CVD 金刚石散热片上的钛、铂和 金多层溅射薄涂层,让人们能够使用标准的 低温焊料粘结技术。

钎焊

CVD金刚石可以使用活性钎焊,在 800℃的高温真空过程中可形成稳定的 碳化物界面。界面剪切强度 可达> 200 MPa。需认真考虑金刚石和大多数附着 材料之间的热膨胀不匹配所产生的应 力。

透射光谱

人造 CVD 金刚石的优异性能使其在从 紫外线 (UV) 到射频传输的现代光学材料 中处于巅峰位置。其固有的光学特性取 决于其在深紫外区的禁带宽度, 截止波长为 225 nm (5.47 eV)。它在紫 外区、可见近红外区、远红外区和射频 区是透明的,在 2.5 - 7 μ m 区间只有微 弱的声子带吸收,在 4.63 μ m 处达到峰 值 14 cm⁻¹。

超高纯度 CVD 金刚石从紫外截止波长 225 nm 到远红外区的吸收系数。金刚石的介电常数相 对较低·非常适合作为射频应用的窗口。

折射率

金刚石在 220 nm 处的折射率区间为 2.7 · 在 10.6 μm 处的折射率区间为 2.38。 入射反射率在21.3% - 16.7%之间。Turri 方程近似于 300 - 1650 nm 的色散曲 线,其中 λ以 nm 为单位。

$$n^{2}(\lambda) = 1 + \frac{4.658\lambda^{2}}{\lambda^{2} - 112.5^{2}}$$

大于 2 μ m 时金刚石几乎没有色散 · 上述公式适用于 25 μ m · 合理精度为 (±0.004)。而 Hertzberger 表达式适用 于 2.5 - 25 μ m 区间内的实验数据 · 如 下所示。

波氏 (µm)

 $n(\lambda) = 2.37837 + \frac{1.18897}{\frac{\lambda}{1000} - 0.028} - \frac{1.0083 \times 10^{-4}}{\left(\frac{\lambda}{1000} - 0.028\right)^2} - 2.3676 \times 10^{-5}\lambda^2 + 3.24263 \times 10^{-8}\lambda^4$

折射率热光系数 (1/n) ×(dn /dT) 在红外 区 3.2 - 6.7 × 10⁻⁶ K⁻¹ 区间内,在紫外至 近红外区为 2.0 - 4.0 × 10⁻⁶ K⁻¹。

延伸阅读

13. 折射率 14. 热光学性能

拉曼光谱

在室温下,金刚石的拉曼频率为 ω=1332,3 cm⁻¹、线宽为 1.5 cm^{-1。}材料 科学家可以使用拉曼光谱中的峰形、峰 位和发光来评估金刚石膜的品质,包括 相纯度、晶体完整性和应力。

在实际应用中,拉曼频移本身可用作传 感器使用。温度相关性由半经验表达式 给出:

$$T = \frac{Dhc\omega_0}{k\ln\{1 + c/[\omega_0 - \omega(T)]\}}$$

当 ω0 = 1333 ± 0.6 cm⁻¹ 时· C = 61.14 ± 5·D = 0.787 ± 0.03。 C 和 D 是拟合常数·ω0 是 T = 0 K 时 的拉曼频率。

峰移与静水压力的近似关系由以下表达 式给出:

$$\Delta\omega(P) = 3.2 \,\mathrm{cm}^{-1} \,\mathrm{GPa}^{-1}$$

拉曼激光器

CVD 合成使拉曼变频器等腔内激光光学器件成为现实。与其他高增益拉曼晶体相比,人造金刚石具有更大频移和更高亮度。

Raman FOM =
$$\frac{kgL}{(dn/dT)\Delta\lambda}$$

这是用 CVD 金刚石制作的 6 x 2 x 2 mm 拉 曼激光晶体,它将大频移和高增益与金刚石固 有的出色力学性能相结合,使其对环境的敏感 度大大降低。

	SC CVD 金刚石	KGW KGD(WO ₄) ₂	YVO ₄	Ba(NO ₃) ₂
拉曼增益 (g)	15	4	5	11
拉曼频移 ∆λ cm⁻¹	1332	901	892	1047
晶体长度 (L) mm	8	25	25	25
导热率 (k) W m⁻¹ K⁻¹	> 2000	5	5.2	1.2
拉曼品质因数	1440	3	20	1

延伸阅读

15. 拉曼温度计 16. 拉曼光谱

17. 拉曼激光器

紫外至近红外光学性能

可制作面积达 ~60 mm² 的高纯度单晶 CVD 金刚石,它在紫外、可见光和近红 外波段有众多用途。

散射

CVD 单晶金刚石的散射很低,因为引起 散射的宏观缺陷和表面光洁度受到了很 好的控制。在 1064 nm 下,总前向散射 可低至 0.02%。

单晶 CVD 金刚石

220 nm-~2.5 μm 区间内的吸收主要归 因于氮。当氮含量低于 5 ppm 时·光 学级单晶金刚石具有 IIa 型光学性能。 光谱范围广·在~1μm 以下吸收率低。

光学 + 级低吸收

当氮含量低于 20 ppb 时,单晶金刚石 的吸收率最低。这是一种新型合成光学 材料,适用于要求最苛刻的光学应用。

光学 + 级低双折射

金刚石的立方晶格具有对称性,因此是 一种光学各向同性材料;折射率应与光 偏振无关。但通常来自生长缺陷的应变 会导致双折射。金刚石光学器件经过精 心设计制造,其缺陷密度和取向会导致 样品具有各向同性的折射性能,光偏振 无显著损耗。在可见光和近红外波段, 偏振双折射损耗 (Δn) 可为 < 2 × 10⁻⁵。

多晶光学级金刚石

多晶金刚石在紫外、可见光和红外波段 的吸收率都很低,也是一种优良的光学 材料。加上其热学和力学性能,与传统 的红外激光光学器件相比,多晶金刚石 具有高达 100 倍的功率处理能力。

晶粒的竞争性生长和较高的缺陷密度(如堆垛层错)导致较高的应变。因此, 多晶金刚石不太适合低双折射或紫外至 近红外应用,在此类应用中,散射是更 重要的考虑因素。在 10.6 μm 下,金刚 石的折射率为 2.38,使用增透膜后透射 率可 >99%。

这张多晶透明级 CVD 金刚石的跨极透射光 学显微照片中显示的颜色是应变诱导的双折 射导致的。

散射

小于 2 μm 时的散射损耗微乎其微;多 晶金刚石具有优良的红外光学性能。高 入射角散射与金刚石的微观特征有关, 而低角散射可归因于应变诱导的双折 射。在 10.6 μm 处,金刚石的剩余消光 系数为 0.04 - 0.07cm⁻¹。

微裂纹特征

晶界裂纹是多晶 CVD 金刚石生长的特征。此类宏观裂纹是在合成过程中形成的,是晶内和穿晶应力消除的一种机制。

对于工业激光器·大面积多晶 CVD 金刚石光 学器件比其通常取代的 ZnSe 光学器件更加 坚固可靠。

红外波段内发射率

远红外的剩余吸收是由于多声子振动吸 收过程拖尾所致。这些过程都与温度相 关,金刚石具有发射性。但这些过程只 有在 ~100 °C 以上才有意义,并且吸 收可通过声子复合和破坏模型来成功描 述。

介电性能

从太赫兹波段到射频直至更高波段,金 刚石的介电常数几乎恒定不变。金刚石 的介电常数为 35 GHz 时 ε=5.6 8±0.15 ,损耗正切 <1×10⁻⁴。

光学级多晶 CVD 金刚石的温度相关红外光 谱。

-		

直径 >100 mm 的多晶金刚石光学器件可用于 高功率窗口应用。

10.6 µm Abs. cm⁻¹ 温度 (°C) 25 0.035 100 0.063 150 0.082 200 0.102 250 0.123 300 0.145 350 0.168 400 0.191 450 0.216 500 0.241

近似吸收系数是温度的函数。参见参考资料。

$$\epsilon(T) = 5.700111 - 5.35167 \times 10^{-5}T + 1.6603 \times 10^{-7}T^2$$

	多晶 CVD 金 刚石 (光学 [、] 热学、 电子)	多晶 CVD 金刚石 (机械 [、] 电化学)	单晶 CVD 金刚石
尺寸 厚度	< Φ 100 mm; < 4 mm	< Φ 130 mm; < 2 mm	8 x 8 mm; < 6 mm
尺寸公差	-0, + 0.2 mm	-0, + 0.2 mm	-0, + 0.2 mm
厚度	± 25 μm	± 25 μm	± 25 μm
切边切口角度	3°, ± 2°	3°, ± 2°	3°, ± 2°
研磨表面粗糙度 (Ra)	< 200 nm	< 200 nm	< 200 nm
抛光表面粗糙度 (Ra)	< 20 nm	< 20 nm	< 5 nm
平整度(633 nm)	10 mr	n1条纹	3 mm 1 条纹
错切取向			± 3°
面角(棱镜)			± 0.25°

所列规格是常见生产工艺限值。可应要求使用更严格的公差。

导热

与金属不同,金刚石中的热传导主要由 晶格振动(声子)控制。导热率则取决 于声子散射方式。在金刚石中,这在室 温下与声子 - 声子散射(倒逆过程)和 缺陷/杂质散射有关。多晶 CVD 金刚石 的晶粒尺寸在 ~50 µm 以上,相纯度 高,面外导热率的变化小于面内导热率 的 10%。

温度(K)

金刚石热导率与温度之间的关系。在单晶和 高相纯度多晶金刚石中,声子散射占主导地 位。而细颗粒材料呈现出较低的导热率以及 较低的温度相关性。多晶光学级 CVD 金刚石 的室温导热率超过 2200 W m⁻¹ K⁻¹。

热膨胀

金刚石的热膨胀系数极低,这归因于其 极高的键能。一般而言,材料的膨胀与 声子特性相关,是温度的函数,通常随 温度而变动。金刚石在室温下的热膨胀 系数很低,随着温度升高而稳步上升, 如下表所示。

温度 (K)	线性系数 (α) ppm	参考300 K 时的 热膨胀系数均值
200	0.37	-
300	1.07	-
400	1.81	1.45
500	2.46	1.80
600	3.02	2.11
800	3.86	2.65
1000	4.45	3.09

多晶热学级用于散热应用。

延伸阅读 21. 导热率 22. 热膨胀 CVD 金刚石具有极高的导热率,是理想 的散热材料。典型的铜基散热片导热率 为 380-450 W m⁻¹ K⁻¹,而 AIN、BeO 等 绝缘片则介于 200 至 300 W m⁻¹ K⁻¹ 之 间。

带图案的金端金属化使高质量Diafilm TM100 散热片功能与器件接触和封装要求集成起来。

热流建模

高功率密度器件是一种结构复杂的器件,其在半导体、散热片和热沉之间存 在关键界面。为了设计和评估封装器件 的性能,采用有限元建模对不同的散热 片和封装方案进行比较。

CMC 散热片上多通道 ASIC 芯片(左)和基于 CMC 的 CVD 金刚石散热片上的 ASIC芯片(右)的有限元模型。该器件的性能取决于通道 内峰值温度。

材质选项

利用有限元建模系统,可以评估不同热导率、附着物和尺寸的影响。 热学级CVD 金刚石可设计为 700 至 2200 W m⁻¹K⁻¹,导电级可用于射频电阻 应用。

降低结温

模型预测了在 ASIC 和 350 W m⁻¹ K⁻¹ CMC 热沉之间嵌入 1 mm厚的 TM220 金刚石散热 片·可将有源放大器区域的峰值温度从 92℃ 降低至68℃·降幅为 25%。

应用

CVD 金刚石散热片用于提升 ASIC、射频功率放大器、半导体和固态激光器的性能和可靠性,广泛应用于材料加工、电信、航空航天等行业。

延伸阅读 27. 热管理 33. 热建模

lla 型单晶金刚石

在过去几十年里,单晶金刚石一直 对超精加工的发展至关重要。在某 些应用中,纯度更高的 IIa 型金刚石 (N < 1 ppm)比 HPHT 工艺合成的 Ib 型 金刚石 (N > 100 ppm)更具优势,因为 其硬度更高。

CVD IIa 型单晶金刚石自推出以来,由于面积 更大、形状规则且性能更一致,在超精加工应 用中取代了天然来源的 IIa 型金刚石。

HPHT Ib 型单晶金刚石

在所有高硬度材料中,硬度和韧度之间 都存在反比关系。在超精应用中,需在 耐磨性和断裂韧性之间取得平衡。而晶 体缺陷较多的Ib型金刚石比IIa型金刚石 表现出更高的韧性。

超精刀具加工

了解晶面和晶向是成功地进行切削刃尺 寸控制和刃口精密修整加工的关键因 素。根据对工件的取向不同,原子平面 将赋予不同程度的研磨性或抛光的难易 程度。 实际应用中,金刚石晶面对称性中的" 容易和困难"方向决定了刀具制备过程 中的材料去除率。

{100} 面内最软的抛光方向与该面内的 <100> 方向平行。最硬的抛光方向是 {111} 面内的 <110> 方向。

刀具被活性钎焊到硬金属基体和刀杆上(参见 第11页)·定位对于避免因热膨胀差异造成的 断裂至关重要。

多晶机械切削刀具

多晶 CVD 金刚石具有优异的耐磨性、 断裂韧性和热稳定性平衡,可为某些应 用提供优良的切削性能。由于具有多晶 性,刀具切削能力也不受晶体取向的影 响。为了便于刀具制造,还可使用类金 属导电性(掺硼)多晶 CVD 金刚石。

半导体性能

金刚石是一种宽禁带半导体材料,间接 禁带宽度为 5.47 eV。对高纯度 CVD 金刚石进行的实验表明,这种金刚石具 有高迁移率和长电子和空穴寿命。加上 高击穿场强和高导热率,这使得金刚石 成为许多要求苛刻的电子应用的首选材 料。

金刚石的辐射硬度源于其较高的原子位 移能(42 eV/原子)和较低的原子 序数。因此,与其他固态探测器材料相 比,它具有稳定的高辐射灵敏度。

掺杂金刚石

所有已知的金刚石掺杂剂均处于深层, 但在 B > 1 × 10^{20} 个原子cm⁻³的情况 下,当金刚石发生莫特转变时,受主能 级与价带重叠,表现出类金属的 p 型导 电特性。

由于存在激活能,金刚石中的 n 型掺杂 仅被考虑用于高温和紫外光应用,但成 功率有限。

	多晶	单晶
禁带宽度 (eV)	5.47	5.47
[N] _s º (ppb) EPR	< 50	< 5
B (ppb) SIMS	< 0.5	< 0.5
掺杂剂	激活 可达到的 能量 级别	
砌	0.37 eV	1021
磷	0.6 eV	1020
氣	17 01/	1019 (111)

高纯度电子级单晶金刚石可用于高能粒子探 测。

电子级单晶金刚石

CVD 合成法可制造出非故意缺陷密度在 小于等于十亿分之几 (~10¹⁴ cm⁻³)的人 造金刚石。此类金刚石具有出色的宽带 隙电子特性。作为一种极低的点缺陷材 料,它们是低或单点浓度工程缺陷的平 台。

延伸阅读

23. 金刚石探测器 24. 硼掺杂 35. 电子级金刚石 材料中的缺陷可能具有一种被称为"自旋"的量子特性。金刚石有强大的碳碳键,因此其德拜温度高达(~2200 K)。结果表明,即使在室温(RT)下,自旋态也可能保持较长的时间。

金刚石中的 NV 色心

金刚石中带负电荷的氮空位 (NV) 具有 这种自旋特性,并具有一系列独特的性 能。

NV 色心、其能级结构及其在测量磁场时的用途。

如上图所示,绿色光源(通常是激光器)可用于生成来自 NV 缺陷的红光。 在发光时,NV 被初始化为特定的自旋 状态。然后就可以通过微波的应用进行 相干控制,并通过监测红光发射量来读 出自旋状态。在 CVD 金刚石中,NV浓 度可按需调控。

延伸阅读

36. 量子革命 37. 相干时间

38. 磁场传感

在 EL 级样品中存在单 NV 缺陷、13C 已 贫化的情况下,相干时间(量子态保持 时间)在室温下可延长至数秒。因此, 人们对在以下领域利用 NV 色心非常感 兴趣:

- 安全通信
- 量子计算/模拟
- 新一代传感器

B场传感与 NV 相干时间

NV 色心的自旋能级也通过塞曼效应 受到 (B) 磁场的影响。可利用多个 NV

色心测量 B 磁场的强度和方向,形成 具有高灵敏度和大动态范围的矢量传感

灵敏度 (n) 可按以下方法估算:

$$\eta \sim \frac{1}{g_e \mu_B} \frac{1}{C\sqrt{\beta}} \frac{1}{\sqrt{N_{NV}T_2^*}}$$

NV 色心数量 (N_{NV}) 和相干时间 (T2*) 是 材料的关键特性。二者是相关的,因为 增加氮的浓度会降低 T2*。因此,视乎 器件的尺寸和灵敏度要求, NV 和 13C 的浓度可能需要细化。

掺硼金刚石

所有电极材料中,导电的多晶掺硼金刚 石 (BDD) 在水溶液中具有最宽的溶剂 窗口。与其他电极材料相比,它还具有 非常低的背景电流,电容电流和低吸附 性,并能承受极端电位和恶劣环境。但 这些性能与金刚石的品质高度相关,会 随着非金刚石碳 (NDC) 含量的减少而提 升。在微量或可略量的 NDC 含量下, 均可制备自支撑固态 BDD 电极。

BDD 应用

金刚石在水溶液中很宽的溶剂窗口将气 体释放到很高的阴极/阳极电位,并能以 很高的电流效率生成具有强氧化性的羟 基自由基。这一现象可在高级氧化工艺 中加以利用。BDD 电极的惰性特性使其 成为电化学传感应用的理想平台。

BDD 的电化学性能

抛光的块状自支撑多晶 BDD,B > 1 × 10²⁰ 个原子cm⁻³ 和可略量的 NDC,具 有氧终止表面,具有以下电化学性能:

- 电阻 ~0.5 × 10⁻³ Ohm m
- 金刚石溶剂窗口 > 3.0 V
- 可逆性 < 70 mV (Ru(NH₃)₆³⁺)
- 电容 < 10 µF cm⁻¹

0.1 M KNO3·pH 6.5 溶液中的溶剂窗口。对于 金刚石电极·溶剂窗口受 BDD 电极中非金刚 石碳含量的影响很大。

从含碱工业废水中去除顽固的溶解污染物。 化学需氧量 (COD) 是衡量废水污染程度的指标,而 BDD 促成的电化学高级氧化是少数几 种能够将污染物去除到安全排放极限以下的 技术之一。

延伸阅读 25. BDD 电化学 26. BDD 水处理

光学级和射频级

		多	多晶		单晶		
性能		光学级	射频级	光学级	光学 + 级		
硬度 (GPa)		81 ± 18 ⁽³⁰⁾	81 ± 18 ⁽³⁰⁾	70 - 120 ⁽³⁾	70 - 120 (3)		
断裂韧性(MPa m ^{0.5})	8.5 ⁽³⁾	8.5 (3)	5 - 7 ⁽³⁾	5 - 7 ⁽³⁾		
杨氏模量 ((GPa)	1050 (3)	1050 ⁽³⁾	1050 ⁽³⁾	1050 ⁽³⁾		
泊松比		0.1(3)	0.1(3)	0.1(3)	0.1(3)		
断裂应力 (l [韦伯模量]	MPa)			3500 [2.5] ⁽³⁾	3500 [2.5] ⁽³⁾		
成核面		800 [10]	800 [10]				
生长面		400 [15]	300 [15]				
雨水冲击D ⁻ (m s ⁻¹) 2 m	TV (损伤阈值速度) m 水滴大小	525 (31)		457 - 533 ⁽³¹⁾	-		
沙蚀 (mg k 100 ms ⁻¹ C3	g-1) 300/600 沙	2.1 ± 0.6 ⁽³⁰⁾		-	-		
导热率 300) K (W m ⁻¹ K ⁻¹)	> 2200	> 2000	> 2200	2200		
导热率 425	5 K (W m ⁻¹ K ⁻¹)	> 1600	> 1500	> 1600	> 1600		
热膨胀系数 (ppm K ⁻¹)		1.0 at 300 K	1.0 at 300 K	1.0 at 300 K ⁽²²⁾	1.0 at 300 K		
		4.4 at 1000 K	4.4 at 1000 K	4.4 at 1000 K $^{\scriptscriptstyle(22)}$	4.4 at 1000 K		
	(10.6 µm)	2.376 (30)		2.376 (30)	2.376 (30)		
折射率	(1550 nm)	2.386 (13)		2.386 (13)	2.386 (13)		
	(1064 nm)	2.392 (13)		2.392 (13)	2.392 (13)		
dn/dT (K ⁻¹)		9.6 x 10 ^{-6 (30)}		9.6 x 10 ^{-6 (30)}	9.6 x 10 ^{-6 (30)}		
介电常数 C) (35 GHz)	$5.68 \pm 0.15^{(30)}$	$5.68 \pm 0.15^{(30)}$	-	-		
损耗角正切] 145 GHz (10 ⁻⁶)	8 - 20 (32)	10 - 100 (32)	-	-		
10.6 µm 吸	收系数 (cm ⁻¹)	< 0.07		< 0.05 ⁽¹²⁾	< 0.05		
3-5 µm 吸L	收系数 (cm⁻¹)	最低 0.8 at 3.7 µm ⁽³⁰⁾		最低 0.8 at 3.7 µm ⁽³⁰⁾	最低 0.8 at 3.7 µm ⁽³⁰⁾		
1.064 µm 🗓	B收系数 (cm⁻¹)	典型值 0.12 (12)		< 0.1 ⁽¹²⁾	0.005(12)		
		0.02 at 573 K		0.02 at 573 K	0.02 at 573 K		
10 µm 下的	发射率 (1 mm 厚)	0.03 at 773 K ⁽¹⁹⁾		0.03 at 773 K ⁽¹⁹⁾	0.03 at 773 K ⁽¹⁹⁾		
集成前向散	ɪ射 8 - 12 µm (%)	0.1 - 0.7% (19)		-	不适用		
可见集成前向散射 (%)		< 4% ⁽¹⁹⁾		< 0.7% ⁽¹²⁾	0.10%		
双折射 (n _e	- n ₀)			1 x 10 ^{-4 (18)}	< 5 x 10 ^{-5 (18)}		
 比热容(J Ko	g ⁻¹ K ⁻¹) 300 K	520 (21)	520 (21)	520 (21)	520 (21)		
透射 8-200) µm (1 mm 厚)	71.4% #	68 - 70% #	71.4% #	71.4% #		
透射 633 n	m (1 mm 厚)	> 64% #		> 69% #	70.6% #		

	TM100	TM150	TM180	TM200	TM220	ETC700
导热率						
300K时(Wm ⁻¹ K ⁻¹)	>1000	>1500	>1800	>2000	>2200*	~700*
425K时(Wm ⁻¹ K ⁻¹)	>900	>1400	>1500	>1500	>1620	>500
热膨胀系数						
300K 时 (ppm K-1)	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1
1000K 时 (ppm K ⁻¹)	4.4 ± 0.1	4.4 ± 0.1	4.4 ± 0.1	4.4 ± 0.1	4.4 ± 0.1	4.4 ± 0.1
热扩散系数						
300K (cm ² s ⁻¹)	>5.5	>8.3	>10.0	>11.1	>12.2	>3.9
比热容						
300K (J kg ⁻¹ K ⁻¹)	520	520	520	520	520	520
硬度						
GPa	81 ± 18	81 ± 18	81 ± 18	81 ± 18	81 ± 18	81 ± 18
断裂韧性						
(MPa m ^{0.5})	5.3 - 7.0	5.3 - 7.0	5.3 - 7.0	5.3 - 7.0	5.3 - 7.0	8.5
杨氏模量						
(GPa)	1050	1050	1050	1050	1050	1050
泊松比	0.1	0.1	0.1	0.1	0.1	0.1
密度						
(10 ³ kg m ⁻³)	3.52	3.52	3.52	3.52	3.52	3.52
电阻率						
体 Rv (Ω cm)	1012	1012	10 ¹²	10 ¹²	10 ¹³	0.05 - 0.07
面 Rs (Ω cm)	1010	1010	1010	10 ¹⁰	10 ¹¹	0.05 - 0.07

* 293K 温度下测得

28. 热学应用 20. 余尾化 CVD 余刚石

29. 金属化 CVD 金刚石

特性	Diafilm CDM	Diafilm CDE	MCC - 单晶	Mono
导热率				
300K时(Wm ⁻¹ K ⁻¹)	1000	600	>1900	>800
425K时 (Wm ⁻¹ K ⁻¹)	900	500	>1500	>700
热膨胀系数				
300K 时 (ppm K ⁻¹)	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1
1000K 时 (ppm K ⁻¹)	4.4 ± 0.1	4.4 ± 0.1	4.4 ± 0.1	4.4 ± 0.1
热扩散系数				
300K (cm ² s ⁻¹)	>8.3	>10.0 >	11.1	
比热容				
300K (J kg ⁻¹ K ⁻¹)	520	520	520	520
硬度				
GPa	80 ± 18	80 ± 18	70 - 120†	11 - 100†
断裂应力	生长 - 成核	生长 - 成核	表面光清	皆度相关
(MPa)	500 - 1100	500 - 1100	2000 - 3000	2000 - 3000
断裂韧性				
(MPa m ^{0.5})	8.5	8.5	5	3.4
杨氏模量				
(GPa)	1050	1050	1050	1050
泊松比	0.1	0.1	0.1	0.1
密度				
(10 ³ kg m ⁻³)	3.52	3.52	3.52	3.52
电阻率				
体 Rv (Ω cm)	1 x 10 ¹²	0.05 - 0.07	1 x 10 ¹²	1 x 10 ¹⁰

+取向相关

-

	EP 级	
电化学性能		
掺硼浓度(典型值)	2 to 6 x 10 ²⁰ 个原子 cm ⁻³	平均超过 0.16 mm ²
非金刚石碳	微量	运用拉曼光谱法测得
电阻率 (Ω m)	0.2 - 1.8 x 10 ⁻³	± 0.25 x 10 ⁻³
接触电阻率 (Ω m)	< 1 x 10 ⁻³	对于 Ti:Pt:Au 金属化
上述各值用有抛光表面的欧姆接触	金刚石测得	
溶剂窗口* (V)	> 3.0	0.1 M KN03 相比 SCE (饱和甘汞电极)
电容* (µF cm ⁻²)	< 20 µF	采用循环伏安法在扫描速率 0.1 Vs ⁻¹ 时 推导得出
可逆性 (ΔEp)* (mV)	< 100	制作欧姆接触金刚石时, 在扫描速率为 100 mV s ^{.1} , 直径 1 mm 的圆盘电极 (1 mM Ru(NH3) ₆ ^{3+/2+}) 上录得
侵蚀速率 (μg h ⁻¹ m ⁻²)	< 6	在 10000 A m ⁻² 电流密度下测得
工作电流密度 (A m ⁻²)	> 20000	2 mm 间距 50 mS cm ⁻¹ 电解质
力学特性		
成核面断裂应力 (MPa)	> 800	
生长面断裂应力 (MPa)	> 450	
杨氏模量 (GPa)	1050	
断裂韧性 (MPa m ^{0.5})	8.5	
韦伯模量	> 10	
硬度 (GPa)	81 ± 18	
热学性能		
	~700	面外 (300 K)
未加工的尺寸公差		
厚度均匀性	± 25%	典型值
	Ra < 0.5	典型值
	Ra < 200	典型值
最大面积(圆形 mm ²)	12 270	直径 130 mm
	7150	矩形 110 x 65 mm
侧向尺寸公差 (mm)	± 0.2	所有边缘均由激光切割
加工后		
研磨面粗糙度 (μm)	Ra < 0.25	标准公差
抛光面粗糙度 (μm)	Ra < 0.03	标准公差
厚度公差 (mm)	± 0.05	标准公差

*所列各值采用表面光洁度为 Ra < 0.03 µm 的欧姆接触金刚石测得

性能	単晶	多晶	
 电子			
空穴迁移率 (cm ² V ⁻¹ s ⁻¹)	> 2000	1000	
电子迁移率 (cm ² V ⁻¹ s ⁻¹)	> 2000	~1000	
载流子寿命 (ns)	~2000	~1 - 10	
电荷收集距离	*典型值 > 475 µm	†典型值 >180 µm	*在 0.5 V µm ⁻¹ 作用场, 用于 500 µm 板 †在 1V µm ⁻¹ 作用场, 用于 500 µm 板
电荷收集效率	典型值 > 95%	典型值 > 36%	用于 500 µm 板
禁带宽度 (eV)	5.47	5.47	
电子饱和速度 (cms- ⁻¹)	20	20	
辐射硬度 cm ⁻² 24 GeV 质子		> 10 ¹⁵	< 25% 信号下降
击穿电压 (MV cm ⁻¹)	1 - 2		实验值. 阈值电流 10 µA 4 x 4 mm x 20 µm 接触面积 0.71 mm ²
杂质			
[N ⁰ _S] (ppb)	<5 (典型值 0.1 -1)	< 50	用 EPR(电子顺磁共振) 测得
[B] (ppb)	< 1	< 1	用 SIMS(二次离子质谱仪)测得
热学性能			
导热率 (W m ⁻¹ K ⁻¹)	> 2000	> 1900	
热膨胀系数 (ppm K ⁻¹) at 300 K	1.0 ± 0.1	1.0 ± 0.1	
热膨胀系数 (ppm K ⁻¹) at 1000 K	4.4 ± 0.1	4.4 ± 0.1	
尺寸			
标准尺寸 (mm)	2 x 2, 4 x 4, 4.5 x 4.5	5 x 5, 10 x 10, 20 x 20	公差 ± 0.05 mm 多晶可达 Ø 110 mm
	0.3 和 0.5	0.3 和 0.5	公差 ± 0.05 mm
激光切口	3°	3°	
	<0.2	<0.2	
晶体学取向(面/边缘)	{100} ± 3°<110>		
加工后			
	< 0.5	Ra < 20	在 {100} 面上抛光的单晶
表面光洁度第 2 面 Ra (nm)	< 0.5	Ra < 20	在 {100} 面上抛光的单晶

29

性能	值		备注
量子性能	DNV B1	DNV B14	
¹³ C 馏分	1.	1%	
典型值 [N _s ⁰](处理前)	800 ppb	13 ppm	
典型值 [NV]	300 ppb	4.5 ppm	
典型自旋相干时间 T ₂ *	1 µs	0.5 µs	
典型自旋相干时间 T ₂	200 µs	10 µs	
尺寸			
标准尺寸 (mm)	3	х З	公差 ± 0.05 mm
标准厚度 (mm)	().5	公差 ± 0.05 mm
边缘特征 (mm)	<	0.2	
晶体学取向	{100}		
主面取向误切	<	<3°	
加工后			
- 抛光面粗糙度 (μm)		< 30*	在 {100} 面上抛光的单晶 *可达到 < 1 nm

- 1. Monolithic Diamond Raman Lasers: Reilly S et al. Opt. Lett. 40 (6) pp. 930-933 (2015)
- 2. Science's Gem: Mainwood A et al. J. Phys. Condens. Matter, 21 360301 (2009)
- 3. Mechanical Properties of Diamond: Field J E. Rep. Prog. Phys., 75 (12) 126505 (2012)
- 4. The "Type" Classification: Breeding C M et al. Gems & Gemology, 45 (2) 96-111 (2009)
- 5. CVD: The Early Years: Angus J C. Diam Relat Mater 49 77-86 (2014)
- 6. Synthesis Methods: Schwander M et al. Diam Relat Mater 20(9) 1287-1301 (2011)
- 7. Technology and Applications: Balmer R S et al. J. Phys. Condens. Matter 21 364221 (2009)
- 8. Structure of the Diamond: Bragg, W H et al. Proc. R. Soc. A, 89 (610) 277-291 (1913)
- 9. Diamond Polishing: Schuelke T et al. Diam Relat Mater 32 17-26 (2013)
- 10. Cleaning Diamond: Brown K J et al. J. Chem. Health Saf. 26 (6) 40–44 (2019)
- 11. Brazing Parameters: Buhl S et al. J Mater Sci 45 4358–4368 (2010)
- 12. Single Crystal Optics: Dodson J M et al. Proc. SPIE 8016 80160L (2011)
- 13. Refractive Index: Turri G et al. Op. Mat. Ex. 7, 855-859 (2017)
- 14. Thermo Optic Properties: Ruf T et al. Phys. Rev. B 62, 16578 (2000)
- 15. Raman Thermometers: Simon R B et al. Appl. Phys. Lett. 104, 213503 (2014)
- 16. Raman Spectroscopy: Prawer S et al. Phil. Trans. R. Soc. A. 362 2537-2565 (2004)
- 17. Raman Laser: Antipov S et al. Opt. Lett. 44, 2506-2509 (2019)
- 18. Low Birefringence: Friel I et al. Diam Relat Mater 18 808-815 (2009)
- 19. Polycrystalline Optics: Mollart T P et al. Semicond Sci Technol, Volume 18, No. 3 (2003)
- 20. Emissivity: Piccirillo C et al. J. Appl. Phys. 92, 756 (2002)
- 21. Thermal Conductivity: Twitchen D J et al. Diam Relat Mater 10 (3–7) 731-735 (2001)
- 22. Thermal Expansion: Jacobson P et al. Diam Relat Mater 97 107469. (2019)
- 23. Diamond Detectors: Pernegger H. Phys. Status Solidi A 203 (13) 3201-3386 (2006)
- 24. Boron Doping: Pernot J P et al. Phys. Rev. B 81 (20) 205203 (2010)
- 25. BDD Electrochemistry: Macpherson J V. Phys. Chem. Chem. Phys. 17 2935-2949 (2015)
- 26. BDD Water Treatment: Zimpro(R) Electro-oxidation: The Solution for Difficult-to-treat Wastewaters
- 27. Thermal Management: Obeloer T et al. Electronics Cooling. (2014)
- 28. Thermal Applications: Element Six Thermal Management
- 29. Metallized CVD Diamond: lacovangelo C D. Thin Solid Films 286 264-269 (1996)
- 30. Materials for Infrared Windows and Domes: Harris D C. SPIE, Optical Engineering Press, ISBN 0819434825 (1999)
- 31. Liquid Impact Resistance: Coad E J, Field J E. Proc. SPIE 3060 277041 (1997)
- 32. State of the Art of High Power Gyro-Devices: Thumm M. FZKA 6815, (2003)
- 33. Thermal Modelling: Matin K et al. ITherm 6892264 (2014)
- Diamond Turning: Suet T S et al. In Materials Characterisation and Mechanism of Micro-Cutting in Ultra-Precision Diamond Turning. Springer, Berlin, Heidelberg (2018)
- 35. Electronic Diamond: Isberg J et al. Science 297 (5587) 1670-1672 (2002)
- 36. Quantum Revolution: Markham M L, Twitchen D J. Physics World 33, 39 (2020)
- 37. Coherence Times: Balasubramanian G et al. Nature Materials 8 383-387 (2009)
- 38. Magnetic-field Sensing: Edmonds A M et al. arXiv:2004.01746 [cond-mat.mtrl-sci]

元素六是戴比尔斯集团旗下公司·从事人造金刚石和其他超级材料的设计、 开发和生产·业务遍布全球·主要制造工厂位于中国、德国、爱尔兰、南非、英国和美国。

元素六超级材料解决方案适用于切削、磨削、钻削、剪切、抛光等应用,人造 金刚石在硬度之外的超卓性能在光学、电力传输、水处理、半导体和传感器 等众多行业中开辟了新的应用。

欲进一步了解元素六·请访问我们的网站 e6.com 或通过下列任意一个地址 联系我们。

Element Six Technologies US Corporation*

3901 Burton Drive Santa Clara CA 95054 USA 电话 +1 408 986 2400 电子邮件 ustechnologies@e6.com

Element Six Technologies Limited

Kings Ride Park Ascot Berkshire SL5 8BP UK 电话 +44 1344 638 200 电子邮件 technologies@e6.com

元素六商贸(上海)有限公司

中国 上海 浦东新区 世纪大道 1198 号 世纪汇广场 1 座 3201 室 电话 +86 21 6359 5999 电子邮件 china.technologies@e6.com