

DE BEERS GROUP

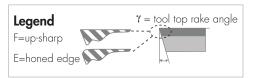
Precision machining: giving toolmakers a competitive edge

PCD, PCBN, CVD diamond and single crystal diamond solutions

Competitive advantage through innovation

At Element Six, we work in collaboration with our customers to develop cutting-edge solutions and materials. We have a proven commitment and capacity to deliver innovative polycrystalline diamond (PCD), polycrystalline cubic boron nitride (PCBN), tungsten carbide (WC), chemical vapour deposition (CVD) and single crystal diamond solutions that enable next generation performance in metalworking applications.

Our state-of-the-art Global Innovation Centre (GIC) located near Oxford, UK, gives us unique access to firstclass research and development facilities that enable us to develop and enhance our innovative supermaterials solutions. We strive to continually find new ways to transform the extreme properties of our synthetic diamond and tungsten carbide solutions, to deliver next generation performance.


PCD grades and characteristics

Grade	Applications	Characteristics	Microstructure
CMX850	Ideal for milling and rough cutting of aluminium alloys where extreme chip resistance is required, also for machining titanium and composites	Sub-micron grain size. CMX850's ultra-fine grain structure is suitable for applications where mirror finishes are required due to its extreme edge sharpness/retention	
СТХ002	Ideal for profile routers and thread cutting tools, can also be used in wear part applications	2 µm average grain size with increased cobalt for ease of processing. CTX002 is ideal for complex tools where excessive processing is required	
СТВОО4	Ideal for cutting of aluminium alloys where high surface finish is required alongside higher wear resistance	4 μm average grain size. CTB004's 4-micron fine grain structure offers the optimum balance between tool performance and resistance to abrasions and chips	
СТВО1О	The ideal grade where roughing and finishing are performed with a single tool. Highly recommended for low to medium content aluminium alloys	10 µm average grain size. CTB010 is the workhorse PCD grade, ideal for many applications where a good balance of toughness and wear resistance is required	
CTH025	Successful in machining of high silicon aluminium alloys, metal matrix composites (MMC), tungsten carbides and ceramics	Average grain size of 25 µm. CTH025 offers optimum wear resistance for abrasive machining conditions	
СТМ302	Application areas include MMC, high silicon aluminium alloys, high strength cast irons and bi-metal applications. Excellent abrasion resistance and good thermal stability	A multi-modal PCD with a combination of 2 µm to 30 µm grain sizes, giving CTM302 excellent wear resistance, edge strength and edge quality	

PCD and CVD application guide

			PCI	o/c	VD	gro	ıde	sele	ectio	on	Cu	Hin	g c	ond	litic	ons	and	ed	ge design		
			CMX850	CTX002	CTB004	CTB010	CTH025	CTM302	CDM	CDE	- 10					m/m 000 11111			Feed, F (mm) FZ (mm/insert)	Depth of cut A _p (mm)	Typical edge geometries
Non ferrous metals Hypoeutectic (SI < 12%)	*	N01 N10																	0.1 - 0.4	0.1-0.4	F
and eutectic (SI = 12%) silicon alloys		N20 N30															-		0.1 - 0.3	0.1 - 0.3	$\alpha = 7 \cdot 20^{\circ}$ $\gamma = 0^{\circ} / +6^{\circ}$
Hypereutectic (SI > 12%) aluminium casting alloys		N01 N10				ī													0.1 - 0.5	0.1 - 4.0	F/E
Metal matrix composites (mmc)		N20 N30																	0.1 - 0.3	0.1 - 3.0	$\alpha = 7-11^{\circ}$ $\gamma = 0^{\circ}/+6^{\circ}$
Ceramic machining (green)		Unsintered	I																0.1 - 0.4	0.2 - 1.0	F/E - α = 0-7°
Ceramic machining (sintered)		Sintered																	0.1 - 0.25	0.1 - 0.5	$\alpha = 0.7$ $\gamma = 0^{\circ}/-6^{\circ}$
Copper and its alloys Magnesium and its alloys		N01 N30																	0.03 - 0.3	0.05 - 2.0	F $\alpha = 7-11^{\circ}$ $\gamma = 0^{\circ}/+6^{\circ}$
Bi-metals		N20																	0.08 - 0.2	0.25 - 1.0	F/E $\alpha = 7-11^{\circ}$ $\gamma = 0^{\circ}/+6^{\circ}$
Grey and high strength irons		K01 K40																	0.08 - 0.2	0.25 - 1.0	F $\alpha = 7-11^{\circ}$ $\gamma = 0^{\circ}/+6^{\circ}$
Composite plastics		01																	0.1 - 0.2	0.2 - 3.0	F/E $\alpha = 7-11^{\circ}$ $\gamma = 0^{\circ}/+6^{\circ}$
Titanium		501 530																	0.1 - 0.2	0.2 - 0.5	F/E $\alpha = 7-11^{\circ}$ $\gamma = 0^{\circ}/+6^{\circ}$

Work material characteristics and to a lesser extent, cutting parameters, determine the demands placed on the cutting tool and hence, the optimum balance of tool material properties. Knowledge of the application, including workpiece composition, facilitates selection of the optimum grade and selection of the correct tool geometry. Often, work material composition and machining parameters (vc, f, ap) go hand in hand. It is possible, therefore, only to provide a typical range of values for each parameter.

PCD product range

70 mm metalworking disc product range

Grade	Standard	Overall height (+/- 0.05 mm)									
	PCD layer	0.8	1.0	1.2	1.4	1.6	2.0	3.18	8.0	thickness (mm)	
	0.3 mm		\checkmark	\checkmark		\checkmark				0.20 to 0.45	
CMX850	0.5 mm		\checkmark			\checkmark	\checkmark			0.35 to 0.65	
	1.0 mm							\checkmark		0.83 to 1.17	
CTX002	0.5 mm		\checkmark			\checkmark		\checkmark		0.40 to 0.60	
	0.3 mm					\checkmark				0.20 to 0.45	
CTBOO4	0.5 mm					\checkmark				0.35 to 0.65	
	0.3 mm	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		0.20 to 0.45	
CTD 0 1 0	0.5 mm		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		0.40 to 0.60	
CTB010	0.7 mm					\checkmark		\checkmark	\checkmark	0.53 to 0.88	
	1.0 mm							\checkmark		0.83 to 1.17	
CTH025	0.5 mm					\checkmark	\checkmark	\checkmark		0.40 to 0.60	
	0.5 mm					\checkmark	\checkmark			0.40 to 0.60	
CTM302	0.7 mm							\checkmark		0.53 to 0.88	
	1.5 mm							\checkmark	\checkmark	1.35 to 1.80	
SX850 wafer)	0.8 mm	\checkmark								0.6 to 1.0	

& CTB discs

0.60 0.55 0.50 0.45

PCD layer profile

Element Six supplies a unique ultrasonic scan depicting the PCD layer profile. The PCD scan indicates a 'North Point', which matches a 'North Point' laser marked on the disc, allowing users to optimise the cutting areas.

Choosing the right PCD grades

CTH025

CTB010

CTX002

Finishing General

machining

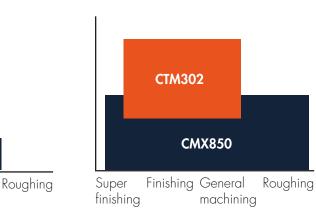
PCD grades for wider usage

Improvements in synthesis techniques coupled with new product development capability have generated two PCD grades, CMX850 and CTM302, that possess the properties to meet all known tool performance challenges. CTM302 provides the ultimate abrasion resistance while CMX850 provides the optimum balance of processability and performance.

Super

finishing

4 main factors to consider when selecting PCD grades


- 1. Chip resistance
- 2. Abrasion resistance
- 3. Electro-discharge characteristics

4. Grindability characteristics

application

Behaviour in

Processing characteristics

Workpiece abrasivity

AlSi alloys >13% Si

AlSi alloys <13% Si

Wrought Al alloys

MMC

Materia	lc and	mach	ining

Element Six PCD grades provide the ideal balance between behaviour in application and processing characteristics to meet the requirements of the cutting or grinding operation.

		Behaviour i	n application	Processing characteristics					
Grade	Grain size	Chip resistance	Abrasion resistance	Electro-discharge machining	Grindability				
CMX850	0.85-1 µm								
CTX002	2 µm								
CTB004	4 µm								
СТВ010	10 µm								
CTH025	25 µm								
CTM302	2-30 µm								

Aero-Dianamics[™] PCD round tool blanks

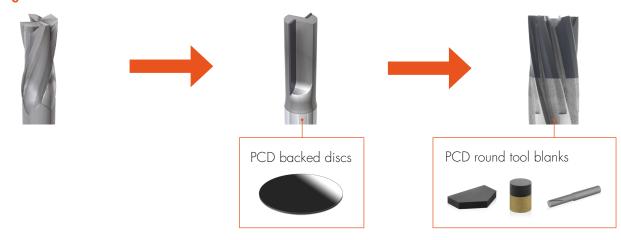
Grades and characteristics

Grade	Applications	Grain sizes	Characteristics
A3MH helix	Milling	Fine	 Helical geometry results in lower tool forces and better chip evacuation High thermal conductivity and low coefficient of friction result in less heat build-up and adhesion Sharp PCD edges cut fibres cleanly
A2DS chevron	Drilling	Coarse	 Tool life extended by 10 times compared to carbide drills Half round disc formats available EDM segments available and cut to order
A3DP planar	Drilling	Fine	 Almost infinite flexibility in drill point geometry Tool life more than 10 times longer than tungsten carbide drills Large rake angles possible for lower tool forces

3D PCD multi flute tool

Setting tool design free

Our Aero-Dianamics[™] range of round tool blanks provides tool designers with the ability to create entirely new PCD tool geometries that break through existing barriers in PCD tool design, with:


- Freedom of design in flute profiles
- Multiple flutes
- Limitless flute angles and orientations

Aero-Dianamics[™] - transforming composite tooling

These next generation composite tooling solutions entirely replace the need for coated tungsten carbide tools for fabricating composite components.

2D PCD two flute tool

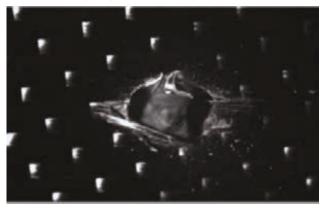
3D tungsten carbide tool

Revolutionary A3MH blanks for milling tools

Our Aero-Dianamics[™] milling range enables significant improvements in productivity over coated tungsten carbide tools:

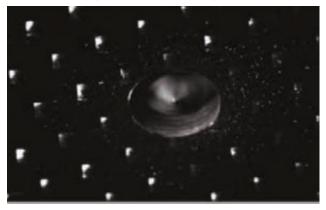
- 3-12 x faster machining speeds
- Lower cutting forces
- Improved tool evacuation

A3DP planar blanks for complex drill geometries


Our Aero-Dianamics[™] drilling range enables significant improvements in productivity over coated tungsten carbide tools:

- Significantly increased wear resistance over coated carbide drills
- 10 x longer tool life in drilling CFRP
- 2 x speed of drilling CFRP/ Al
- Consistent performance over tool life
- Superior workpiece finish

Achieving a superior edge quality and improved productivity


Tungsten carbide

Hole surface quality on CFRP test piece

A3DP planar

Drills faster and provides a consistently clean finish

CVD diamond grades and characteristics

Grade	Applications	Characteristics	Microstructure
CDE PL	Wide-ranging laser cut shape and size for precision machining of MMC, CFRP and woodworking materials	An electrically conducting grade of CVD for cutting tool applications, that allows customers to use EDM machining or EDG grinding within their tooling processing	
CDM PL	Wide-ranging laser cut shape and size for precision machining of MMC and CFRP materials	A general purpose mechanical grade for cutting tools	

Benefits of Element Six CVD diamond: CVDite

- Higher wear resistance than medium PCD grades
- Excellent thermal stability and thermal conductivity •
- Binder-free so is extremely chemically inert •
- Extreme abrasion resistance
- Ideal for applications where higher temperature operating conditions are seen
- High purity •

100

ſ

		Behaviour	in application	Processing characteristics					
Grade	Grain size	Chip resistance	Abrasion resistance	Electro-discharge machinability	Grindability				
CDE	60-80 µm								
CDM	60-80 µm			n/a					
СТВ010	10 µm								

Choosing the right CVDite grade

Element Six's CVDite is most commonly suited to the machining of non-ferrous materials where high abrasion resistance is required. CVDite has high thermal stability and more wear resistance than PCD.

Due to its high abrasion resistance and low coefficient of sliding friction, the CVDite range is also ideal for uses in lubricated and dry wear part applications.

CVDite-PCD life Abrasion resistance depending on application 200 µm LIFE 🛯 CRITERIA RATIO 7:1 100 µm LIFE 🛛 CVDite-PCD life CRITERIA **RATIO** 4:1 PCD 200 FLANK WEAR (µM)

TIME

Single crystal diamond grades & characteristics

Single crystal MCC

Applications	Cho	aracteristics		

MCC is available in 2pt and 4pt orientations. Ultra-precision machining acrylics, copper, germanium. Generates very high surface finishes. Produced under ultra-high purity conditions, giving it a colourless appearance. It offers a combination of extreme wear resistance, excellent chip resistance and high thermal conductivity combined with low thermal expansion.

Monodite

Applications

Primary applications for Monodite are engineered cutting tools and wear parts for super finishing, burnishing, wire guides and ultra-precision machining.

Characteristics

Manufactured using a proprietary high pressure, high-temperature synthesis process and pale yellow in colour. The result is a single crystal synthetic diamond that is highly consistent and has predictable properties and behaviours, offering an unparalleled choice of synthetic diamond required for cutting tool applications.

Product range	Key product features	Primary application	
MT L (rectangular) MT T (triangular) MT R (round)	Highly engineered polished plates, laser cut to specific dimensions	Engineered cutting tools and wear parts for superfinishing, burnishing and wire guides Convenient cut shapes	
МХР	Near-square plates having guaranteed inscribed square		
MWS PT4	Near-round plates having guaranteed inscribed circle	 Superfinishing and precision machining (e.g. precious metals 	
MWS PT2	Engineered polished plates benefiting from 2pt orientation	— and MMC materials)	

Benefits of Element Six single crystal

- Highly consistent, predictable properties and behaviour
- Unrivalled surface finish and component accuracy performance unattainable with conventional polycrystalline tool materials
- Surface roughness values are of the order of nanometres and form accuracies are commonly sub-micron
- Facilitates the manufacture of cutting tools with edge roughness and sharpness values in the order of 10 nm and form accuracies in the micrometre range

PCBN standard product range available

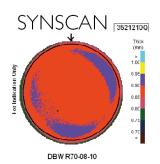
Other sizes and formats available on request

PCBN WC-backed disc product range

Caral	Outside disc diameter (mm)	PCBN usable area (mm)	PCBN layer (mm)	Overall thickness (+/- 0.05 mm)							
Grade				1.6	2.38	3.18	4.76				
DCN450 DCC500 DCX650 DBW85 DBS900	75	70	0.8 (0.7 - 1.0)	~	~	~	~				

PCBN solid low-content product range

Grade Conductive/ non-conductive	Conductive/		Over	all thick	aness (+	Outside disc diameter	PCBN usable			
	1.0	1.6	2.38	3.18	4.76	6.35	7.94		area (mm)	
DSN450	Conductive	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	- 95	90
D\$C500		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
DHA650		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark			Only supplied	d as cut product


PCBN solid high-content product range

Grade	Conductive/ non-conductive	Overall thickness (+/- 0.13 mm)			Outside disc diameter	PCBN usable
		3.18	4.76	6.35	(mm)	area (mm)
AMB90		\checkmark	\checkmark	\checkmark		
AMK90	Non-conductive	\checkmark	\checkmark		99	97
ZAA		\checkmark	\checkmark			

PCBN synscan

Element Six supplies a unique ultrasonic scan depicting the PCBN layer profile.

The PCBN scan indicates a 'North Point', which matches a 'North Point' laser marked on the disc, allowing users to optimise the cutting areas.

Our unique scalable segmentation service

Our fast, high quality and cost-effective segmentation service is supported by the largest laser cutting and electrical discharge machinery (EDM) capacity of all abrasive manufacturers. We provide both standard and complex bespoke geometries.

PCBN grades and characteristics

Grade	Applications	Characteristics	Microstructure
DCN450 (WC- backed) DSN450 (solid)	For moderately interrupted hard turning and finish hard milling as well as high speed continuous turning. Its resistance to crater wear is among the highest in the market. With one of the finest structures of all commercial grades, DCN450 provides for sub-µm surface roughness	 Approximately 45% CBN Sub-µm CBN grain size TiCN binder 	
DCC500 (WC- backed) DSC500 (solid)	For continuously and lightly interrupted cutting of the majority of automotive steels. Excellent abrasion resistance makes it the ideal choice for cold work tool steels and certain valve seat alloys. Also recommended for finishing abrasive high strength cast irons	 Approximately 50% CBN 1.5 µm average grain size Principally TiC binder 	
DHA650	For moderately to heavily interrupted hard turning and finish hard milling in both dry and wet conditions. Suitable for both conventional and elevated machining speeds	 Approximately 65% CBN Binder phase includes TiC/ TiN 	
DCX650	For moderately to heavily interrupted turning of all common hardened steels. Provides an excellent balance of toughness, and crater and flank wear resistance. Also used for plunge machining of valve seat rings	 Approximately 65% CBN Average 3 µm proprietary multi-modal grain size TiN binder 	
DBW85	For applications such as grey iron fine boring and valve seat machining, due to excellent strength and abrasion resistance. Ideal for heavily interrupted cutting of all hard and abrasive work piece materials, including powder metallurgy components. Proven performance also in hard fine milling applications	 Approximately 85% CBN 2 µm average grain size AlWCoB binder for extreme chip resistance 	
DBS900	Ideal for applications where longer tool life is required. Excels in interrupted machining of grey and hard cast irons, hardened steel milling and in the machining of the majority of valve seat ring alloys. Excellent first choice grade for the majority of ferrous powder metals	 Approximately 90% CBN 4 µm average grain size Novel binder system to provide the ultimate abrasion and chip resistance 	
AMB90	For turning and milling of grey and hard cast irons and heavy turning of hardened steels; including components such as brake discs, pump bodies and impellers and large rolls	 Approximately 90% CBN Binder phase includes aluminium nitrides and borides 	
AMK90	For similar application areas as AMB90, but providing higher wear resistance. Exhibits particularly high performance in abrasive work materials such as high chrome cast irons. Usable edges on both faces of insert	 Approximately 90% CBN Binder phase includes aluminium nitrides and borides 	
ZAA	A value-orientated grade for turning of grey cast iron, including components such as brake discs and pump bodies	 Approximately 90% CBN Binder phase includes aluminium nitrides and borides 	

Supporting the switch to higher performing solid PCBN

Element Six's low-content solid PCBN grades, DSN450 and DSC500, offer significant advantages over their WC-backed PCBN equivalents. Their uniform and self-supporting structures significantly increase tool life and provide unique opportunities for innovation in tool design giving toolmakers a technical and commercial edge.

PureCut[™] grade DHA650 is only offered in solid PCBN format and shares the same benefits as DSN450 and DSC500.

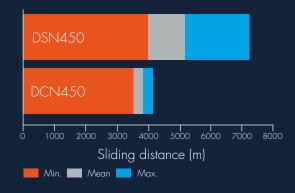
Solid DSN450 WC - Backed DCN450 Solid DSC500 WC - Backed DCC500

Discovering competitive advantage with solid PCBN

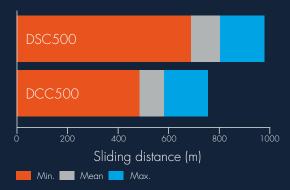
With an identical structure, it has never been easier to make the switch from WC-backed PCBN. The benefits of our low-content solid PCBN grades, DSN450 and DSC500, include:

- Highly adaptable and fully conductive
- Discs can be cut using EDM wire machines and configured into many shapes and geometries, offering greater flexibility in design to differentiate product lines
- Can be brazed directly onto tool substrates through advances in active brazing capabilities, reducing production costs
- Free of bi-metal stress, reducing instances of chipping and cracking during brazing
- Can be supplied at any thickness between 1.0 mm - 10.0 mm

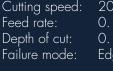
Proven performance


In our application tests under laboratory conditions in continuous turning of hardened steel 60 HR, our solid PCBN significantly extended mean tool life by:

- up to 40% with DSN450
- up to 35% with DSC500


Extended tool life means better performance and reduced costs for end users.

Sliding distance results in continuous machining of hardened steel 60 HRC (SAE620)


Solid PCBN (DSN450) vs. WC-backed PCBN (DCN450)

Solid PCBN (DSC500) vs. WC-backed PCBN (DCC500)

Test conditions

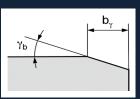
200 m/min 0.1 mm/rev 0.15 mm Edge chipping

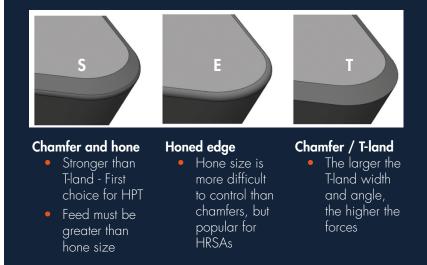
SAE8620

PCBN application guide

Selecting products and grades for your applications

applications, it is possible only to make general recommendations Significant improvements in tool performance should be possible through further optimisation ISO513's colour-coded classification of cutting tool applications has been used here to indicate the intended application area for cutting tool materials 0500000000000000000000000000000000000	Max 0.5 0.5 0.5
H01 130 210 - H10 100 170 - H20 100 160 - H30 100 100 100 100	0.5 0.5 0.5
H10 170 - H20 100 160 - H30 100 100 100	0.5 0.5
H20 H30	0.5
H30	
	0.5
Grey iron - K01 Image: Constraint of the second secon	1
Grey iron - K10 ⁽¹²⁾ 600 2500	
Grey iron - K20 ⁽¹²⁾ 0.2	2
AD ⁽⁹⁾ - K01	
ADI - K10	0.5
ADI - K20 - K30 0.2	0.4
Nodular iron and CGI ^(10, 11)	1
White and chrome irons - K10 50 80 0.1	0.5
White and chrome irons - K20-K30 50 100 0.2	2
Ferrous powder metals < 300 HV	0.5
(Excl. VSR ¹³) < 750 HV - 250 0.1	0.3
< 350 HV: Plunging 50 150 0.02	0.05
< 350 HV: Turning 50 180 0.05	0.2
< 350 HV: Plunging 50 150 0.02	0.05
< 350 HV: Turning 50 180 0.05	0.2
NI-base: \$10 ^(14, 15)	
NI-base: S20 - S30	0.3
CO-base: \$10 50 200	0.5
CO-base: S20 - S30 50 100	


Edge geometry guide					
Depth of cut, a _P (mm) ^(4, 5, 7)		Champfer angle, _{Yb}	Champfer width, by (mm)	Edge radius, r _ß (µm)	Nose radius, r _E (mm) ⁽⁶⁾
Min	Max	Reco	ommend	led ran	ges
-	0.5	15 - 25	0.1-0.2	5-10	0.4-1.6
-	0.3	20 - 35	0.1-0.2	5-10	0.4-1.6
-	0.3	25 - 35	0.1-0.2	10-30	0.4-3.2
-	0.3	25 - 35	0.1-0.2	10-30	0.4-3.2
0.1 0.5	2	15 - 25	0.2 - 1.0	- 20	- 3.2
0.15	0.5	15 -	0.1 -	10 -	0.8 -
0.2	0.4	25	0.3	20	1.6
0.2	2		As for	ADI	
0.2	2	20 -	0.2 -	20 -	1.6 -
1	3	30	1.0	30	> 9.0
-	1.0	0 20	-0.2	-15	-1.6
-	1.0	15 - 35	-0.2	-30	-1.6
NA	NA	10 -	0.1 -	0 -	NA
0.1	0.5	30	0.2	20	- 1.6
NA	NA	15 -	0.1 -	10 -	NA
0.1	0.5	25	0.2	30	- 1.6
-	0.5	0 - 20	0 - 0.3	20	1.6
	0.5 1.0	0 - 20	0 - 0.3	40	3.2


ISO1832 prescribes several edge conditions, three of which are most commonly applied to PCBN indexable inserts.

Indexable inserts made in accordance with ISO16462 are obliged to indicate the edge condition, expressed as a letter symbol (e.g. S, T, E). Five digits indicate the T-land dimensions. Hone dimensions are not indicated in ISO designations.

Example: CNGA120408 \$ 015 30

- Edge shape (S, E, T, etc.
- Chamfer width, bγ, in 1/100th mm
 - Chamfer angle, γb in degrees

- For cast iron and roll machining, solid grades AMB90 and AMK90 are more economical, while DBW85 and DBS900 provide for a superior finish and greater edge strength; e.g. for positive inserts or a heavily interrupted cut
- 2. Performance for grey irons can vary depending on casting quality and degree of ageing
- 3. The feed is selected with nose radius according to surface roughness requirements
- 4. The depth of cut is typically determined by stock removal allowance (oversize) prior to hardening of the component
- While there is no strict minimum feed or depth of cut, excessively low values (e.g., < 0.02 mm) may result in adverse machining vibrations
- 6. While a larger nose radius provides a stronger edge, excessively large values may result in adverse machining vibrations
- For braze-tipped tools, the segment area (in mm²) should be > 100*f*ap so as to securely bear the cutting load
- 8. Indicated cutting speeds for hard steels are primarily for case hardened steels. For higher alloy steels, it may be necessary to reduce the cutting speed to achieve the required tool life
- 9. ADI: Austempered Ductile Iron
- 10. CGI: Compacted Graphite Iron (also known as vermicular iron)
- 11. Compacted graphite cast irons are also successfully machined with PCD we recommend CTM302. The cutting speed for PCD should be 200 +/- 50 m/min
- 12. Milling of grey cast irons is typically done within the upper portion of the speed range indicated
- 13. VSR: Valve Seat Rings
- Super-alloys also known as heat resistant superalloys (HRSA) consist of a very large range of compositions and properties, resulting in very different machining characteristics
- 15. For HRSAs it is preferable to use round inserts. It is also advisable to assess the use of un-chamfered, but honed, cutting edge geometries
- 16. PureCut™ grades are designed to operate at higher speeds than E6's other grades. Please contact E6 technical support for further details

Reduce downtime and improve productivity by converting to integral inserts

With increasing pressure from competitors and end users, tool manufacturers are always looking for ways to simplify the manufacturing process, raise productivity and reduce costs. By switching from brazed inserts to centre-lock full-face inserts, these aspirations can become a reality.

High performance components

Centre-lock full-face PCBN inserts provide for easily manufactured multi-cornered tools with a number of benefits:

- A more robust cutting component than a conventional brazed tool
- Greater reliability in interrupted cutting applications
- Elimination of the braze joint allowing higher temperature coatings to be applied
- Reduced insert failure risks and improved production continuity
- Longer cutting edges that enable productivity improvements in application; either through the use of larger depths of cut or plunge-type machining operations
- High and low CBN content configurations

The benefits of using centre-lock full-face inserts

- Eliminate pocketing and brazing procedures
- Improved precision by eliminating brazing inaccuracies
- Reduce the amount of handling
- Cut the overall production cost per usable corner
- Apply higher temperature coatings
- Shorten the production pipeline by eliminating the need for:
 - carbide preparation
 - segment cleaning
 - brazing
 - after-brazing cleaning

Standard PCBN range available

Other sizes and formats available on request.

Insert shape	Insert style	Clearance	Tolerance class ⁽¹⁾	Hole style	Finished IC ⁽²⁾	Insert thickness	Corner radius
"	С	Ν	Μ	\mathbb{N}	06 - 6.35	02 - 2.38	02
80	80				09 - 9.52	T3 - 3.97	02
	D	Ν	Μ	\mathbb{N}	07 - 6.35	02 - 2.38	02
52	55				11 - 9.52	T3 - 3.97	02
	S	Ν	Μ	\mathbb{N}	06 - 6.35	02 - 2.38	02
	90	_			09 - 9.52	T3 - 3.97	02
	Т	Ν	Μ	\mathbb{N}	09 - 5.56	02 - 2.38	02
	60				11 - 6.35	02 - 2.38	02
E-	R	Ν	Μ	W D	06 - 6.35	03 - 3.18	02
	360				07 - 7.94	03 - 3.18	02
	\sim	Ν	Μ	\mathbb{N}	06 - 9.52	03 - 3.18	02
	80						

IC - Inscribed Circle

- 1. Tolerance on overall thickness +/-0.05 and IC tolerance +/- 0.10 mm
- 2. Grinding allowances apply, IC diameters shown will be produced with a 0.3 mm grinding
- 3. All measurements are mm

PCBN grade availability

Centre-lock full-face PCBN inserts are available in all WC-backed PCBN grades.

End user benefits

Machine operators and engineering managers value the benefits of integral inserts over brazed inserts; the ability to switch from corner to corner means that maintaining production continuity is simply a matter of adjusting the insert. The longer cutting edges of an integral insert also enable plunge machining which can achieve valuable gains in productivity and reductions in both downtime and costs.

Element Six is a global leader in the design, development and production of synthetic diamond and tungsten carbide supermaterials. Part of the De Beers Group, we employ over 1,900 people. Our primary manufacturing sites are located in the UK, Ireland, Germany, South Africa, and the US.

Since 1959, our focus has been on developing the diamond synthesis process to enable innovative synthetic diamond and tungsten carbide solutions. As well as being the planet's hardest material, diamond's extreme and diverse properties give it high tensile strength, chemical inertness, broad optical transmission and very high thermal conductivity.

Contact us

Europe

Customer Services

Т	+353 61 460146
Е	salesorders@e6.com

Americas

Т	+1 281 364 8080
E	ussalesorders@e6.com

Asia Pacific

China	
Т	+86 (0)21 6359 5999
E	office.china@e6.com

Japan

T	+81 (3)3523 9311
E	office.jp@e6.com

